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1. INTRODUCTION

This report results from work performed by the U.S. Arny Ballistic Research l~aboratory
(BRL) in support of the design of a facility which is intended to subject full scale military
equipment to nuclear blast and thermal effects. This facility. described by Pearson ct al.
(1985) is terned the Large Blast/Thermal Simulator (LB/TS) and has been designed to
produce a wide range of nuclear blast and thermal environments. Shock overpressures in the
simulator can range from 2 - 35 psi and simulated weapon yield can range from 1 - 600 "Y.

The LB/TS can be thought of as a large shock tube with a complex geometry. The blast
portion of a nuclear blast simulation is accomplished by releasing high pressure gas from a
set of relatively small steel driver tubes into a large concrete expansion section. By adjusting
the initial driver parameters of pressure, temperature and volume, a desired combination of
shock overpressure and simulated weapon yield can be obtained. Adjustments in the area
ratio between the driver tubes and the expansion tunnel also affect the blast simulation and
are used to extend the facilities operating range.

A simplified 1:57 scale model of the LB/TS was constructed to perform experimental
parametric studies of blast simulator performance. This model also served to provide data
for computer code validation. The model is a simplified. axisymmetric representation of
the more complex LB/TS structure. The flow in the simplified axisymmetric model still
contains most of the important features of the flow in the LB/TS. Because the model lacked
any thermal radiation simulation capability, it is termed a model of a Large Blast Simulator
(LBS) rather than an LB/TS.

The 1:57 scale LBS model is shown in Figure 1. It has a cylindrical driver section of
10.16 cm diameter. Attached to the downstream end of the driver is a converging nozzle
leading to a 4.80 cm throat section which then empties into a cylindrical expansion section
which has an inside diameter of 25.40 cm.

DIAPHRAGM LOCATION

4--0_1
F -f EXPANSION SECTION

10.16 DRIVER SECTION 25.4-0

L.55OPEN TO ATMOSPHERE

L ,,.815 t=o-

4000

ALL DIMENSIONS IN CENTIME T .RS

NOT TO SCALE

Figure 1. The 1:57 Scale Large Blast Simulator.
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Prior to an experiment, the gas in the driver is heated in order to obtain the proper
initial conditions for a free field, ideal nuclear blast simulation. One purpose of heating the
driver gas is to provide density matching on either side of the contact surface between the
gas originally in the driver and the shocked gas, as presented by Opalka (1989). The other
purpose of driver gas heating is to add energy to the driver gas which decreases the driver
pressure required to produce a given shock overpressure. If the driver gas were not heated.
a sudden increase would be seen in the dynamic pressure histories as the contact surface
passed the measurement station. Since this phenomenon is not present in the dynamic
pressure histories of a free field, exponentially decaying blast wave. it is undesirable in the
LB/TS. For this reason, an effort is made to provide contact surface density matching for
all 1:57 scale LBS experiments.

2. EXPERIMENTAL MEASUREMENTS

In all the experiments, pressure measurements were taken at a location 177.80 cm from
the beginning of the expansion section in the axial direction. This axial position corresponds
roughly to the center of the test section in the full scale LB/TS. Two pressure gages were
employed at this location. A static pressure gage was located with its sensing element flush
with the interior surface of the expansion section wall, 12.7 cm from the axis of symmetry.
A stagnation probe was also positioned at this axial location and was facing upstream into
the axial flow. This stagnation gage was mounted in a fixture which could be adjusted to
position the face of the gage anywhere along the radius of the circular expansion section.

All the data was recorded using an analog to digital (A/D) card installed in a Zenith
model 248 microcomputer. This device can simultaneously record up to 16 channels of
data. The maximum sampling rate of the card for one channel is one million samples per
second. The maximum sampling rate for 16 A/D channels is 60,000 samples per second.
The time and voltage histories for each channel are written to a 12 bit binary disk file by the
software which drives the A/D card. These data are then converted to ASCII, after which a
data reduction program developed at BRL is then used to derive pressure histories from the
pressure gage voltage histories.

By measuring the stagnation and static pressures, the Mach number and dynamic pres-
sure histories can be obtained. Accurate dynamic pressure histories are crucial to blast
simulation because it is the dynamic pressure that causes targets to experience large dis-
placements and overturning. In fact, the intended operating envelope of the LB/TS is based
on dynamic pressure impulse for shock overpressures above 70 kPa.

In order to find the dynamic pressure, one must first determine the Mach number, which
can be calculated using the static and stagnation pressures. To obtain the Mach number
history, one simply repeats the following set of calculations for each point in the pressure
histories. Equation 1 assumes the flow is subsonic and that it is brought to rest at the
probe's stagnation point through an isentropic process (Liepmann and Roshko 1957). The
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isentropic relation expressed in Equation 1 can be solved for the square of the Machli number
yielding Equaion 2,

P0 + 7 112) (1)

2  2 - 1) (2)

where:

* 1 is the local Mach number of the gas,

" po is the measured stagnation pressure,

" p is the measured static pressure, and

e "/ is the ratio of specific heats (1.400).

If the local Mach number turns out to be greater than 1.0 from Equation 2. then the flow
is considered to be supersonic, in which case Equation 3 should be used. Since Equation 3
has no closed form solution for Ml, a Newton iterative solver is used to determine its value
for a given static and stagnation pressure.

p - = ( 2-yM1_ - 1 1 1) ( + 1 M2) (3)

Once the local Mach number is known, the dynamic pressure, q, can be calculated using
Equation 4.

q pa2 (4)

3. FLOW DISTRIBUTION INVESTIGATIONS

In an effort to characterize the expected flow patterns in the full scale LB/TS, the
Ballistic Research Laboratory conducts a large number of experiments in the 1:57 scale LBS
described earlier. A practice employed in many experiments was to position the face of the
stagnation probe half way between the centerline and the wall of the expansion section. The
probe was positioned to remain above the boundary layer that builds up from the wall after
the passage of the shock front. The codes used do not model the boundary layer, so an
attempt was made to avoid it in experimental measurements used for comparison. Initially,
the probe was not placed on the center line of the expansion tunnel because it is a symmetry
boundary in the calculations and the results there are more open to question.

Experimental studies with the 1:57 Scale LBS are often performed in conjunction with
computational studies (Opalka and Mark 1986). For one of these studies, the SHARC
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hydrodynamic computer code (hydrocode), as described by Hikida 0 al. (1988). was used

to simulate the flow in the 1:57 scale LBS and the full scale LB/TS. The SHARC code
was chosen over others for this study because of recent improvements which had been made
to the code which were thought to be beneficial to this type of calculation. Two of the
most important improvements were the addition of an advection scheme which is second

order accurate in both time and space and a K-(. turbulence model, as presented b Barthel
(1985).

Early calculations with the SHARC code were performed using the first order accurate
advection scheme without turbulence modeling. The results of these calculations indicated
that a large gradient in flow velocity existed along the radius of the axisymmetric shock tube.
These results agreed with results that had been previously obtained from the BRL-BLAST2D
code, as l)resented by Hisley (1990).

Liepmann and Roshko (1957) define the dynamic pressure as a function of the square
of the velocity in the direction of measurement. It can therefore be concluded that the
large axial velocity gradient observed in the initial calculation will likewise create a large

dynamic pressure gradient across the radius of the expansion section. It is dynamic pressure
which causes targets to experience large displacements and overturning in free field and
experimentally simulated blast events. For this reason, accurate computational modeling of
dynamic pressure in the full scale LB/TS and the 1:57 scale LBS is crucial to the success of
the LB/TS design program. Erroneous dynamic pressure estimates could result in the design
of a simulator which is incapable of producing the desired nuclear blast wave simulations.

As a result of the large velocity gradient found in the computational results, an experi-
mental study was initiated to determine if this velocity gradient actually (lid exist. During
the course of the experimentation, the distance from the face of the stagnation pressure
gage to the expansion section wall was varied so that a profile of dynamic pressure impulse

as a function of radial position could be obtained. The ideal solution would have been to
place several gages across the radius of the expansion section. Unfortunately, the size of the
gage relative to the diameter of the expansion section prohibited this. The use of multiple
gages would have produced a significant blockage of the available flow area in the expansion
section, which could result in misleading measurements of dynamic pressure impulse.

In an attempt to improve the comparison between the calculation and experiments, two
additional calculations were performed after the tests. In the first calculation, a K-c turbu-
lence model was added and the first order advection scheme used in the initial calculation
was retained. In the second calculation, the K-c turbulence model was again used, but a
second order advection scheme with artificial viscosity was substituted for the first order
advection scheme without artificial viscosity. It has been common practice to employ the
artificial viscosity model in all second order advection calculations in order to improve the

stability of the code and suppress high frequency oscillations and "overshoots" in the pres-
sure histories. The dynamic pressure histories were obtained by placing a data gathering
station in each computational "cell" across the radius of the expansion section 177.80 cm
downstream from the beginning of the expansion section. This axial position corresponds
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exactly to the axial position of the pressure gages in the experiments which allows for (lirect
comparison to the experimental results.

4. RESULTS OF EXPERIMENTS AND CALCULATIONS

An effort was made to keep the initial conditions of all the experiments as close as
possible to each another. For each test, the driver overpressure was set at 15.513 MPa. The
driver temperature was set according to the requirement for density matching across the
contact surface as defined by Opalka (1989). This resulted in an average driver temperature
of 581.252 K. With an average ambient temperature of 285.789 K. the ratio of the average
driver temperature to the average ambient temperature turns out to be 2.034. The initial
conditions for the experiments and the measured dynamic pressure impulse for each test are
listed in Table 1.

Table 1. Experimental Results

Dynamic
Station Ambient Ambient Driver Pressure
Radius Pressure Temp. Temp. Impulse

(cm.) (Wh) (K) (K) (0a - s)
0.000 102.87 284.261 578.150 0.711
0.000 102.94 288.150 585.372 0.726
0.000 103.77 284.261 576.483 0.872
3.175 103.22 282.039 573.706 0.722
3.175 102.39 283.706 578.150 0.800
6.350 103.77 284.261 576.483 0.719
9.525 102.73 282.039 573.150 0.643
9.525 102.94 278.706 565.928 0.676
9.525 103.77 291.483 590.928 0.711
9.525 102.25 279.817 570.372 0.745

Standard atmospheric pressure and temperature, 101.325 kPa and 288.15 K respectively.
were employed in the calculations. To match the experiments, the driver overpressure was
set to 15.513 MPa while the driver temperature used was 585.37 K. The driver temperature
ratio for the calculations turns out to be 2.031, which compares well with the experimental
average of 2.034.

The results of the calculations are summarized in Table 2. At the top of this table is a

key for determining which calculation is represented by each column. As the key indicates,
the column labeled "M3TOVO" is the first order advection calculation with no turbultnce or
viscosity. "M3T1V0" represents the first order advection calculation using K-c turbulence
and no viscosity. And the label "M4T1VI" stands for second order advection with K-(
turbulence and artificial viscosity.
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Table 2. Computational Results

M3: First Order Advection
M4: Second Order Advection
TO: K-c Turbulence Off
TI: IK-c Turbulence On
VO: Artificial Viscosity Off
VI: Artificial Viscosity On

Station Dynamic Pressure Impulse
Radius (kPa - s)
(cm) M3TOV0 M3T1VO M4T1V1
0.200 0.322 0.562 0.630
0.600 0.324 0.564 0.631
1.000 0.326 0.567 0.633
1.400 0.330 0.573 0.636
1.800 0.336 0.580 0.640
2.200 0.346 0.589 0.645
2.591 0.362 0.599 0.650
2.974 0.385 0.609 0.655
3.357 0.416 0.612 0.661
3.740 0.458 0.634 0.664
4.123 0.511 0.647 0.672
4.506 0.579 0.660 0.678
4.889 0.660 0.673 0.683
5.281 0.769 0.686 0.688
5.682 0.893 0.698 0.693

6.083 1.031 0.719 0.701
6.885 1.317 0.727 0.705
7.286 1.443 0.733 0.708
7.687 1.527 0.738 0.710
8.088 1.580 0.740 0.712
8.489 1.580 0.741 0.714
8.890 1.519 0.740 0.715
9.291 1.408 0.738 0.716
9.692 1.237 0.735 0.717
10.093 1.042 0.731 0.718
10.494 0.853 0.727 0.718
10.895 0.653 0.722 0.718
11.296 0.492 0.719 0.719
11.697 0.389 0.714 0.719
12.098 0.340 0.711 0.719
12.499 0.316 0.709 0.719
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The dynamic pressure impulse results in Tables 1 and 2 are illustrated in Figure 2. In
this figure, the dynamic pressure impulse is plotted as a function of the station radius. At
the left of the chart. the station radius of 0.0 cm represents the centerline. The wall of the
expansion section is located at a radius of 12.7 cm.

Results of Gage Position Experiments and Calculations

1.6

* Experiments

1.4 - M3TOVO
o - M3T1V0
0-

1.2 - M4T1V1
1.2-

S1.0-
03.

E
0 0.8.
O .6-

0-

.2 0.4
E
0
>. 0.2

0.0

0.0 2.5 5.0 7.5 10.0 12.5

Station Radius (cm)

Figure 2. Computational and Experimental Results.

The experimental results are represented by the solid dots. One can see that, according
to the experiments, the dynamic pressure impulse is relatively constant across the radius of
the expansion section. The experimental impulse is slightly greater at the centerline than
it is at the wall. Since the dynamic pressure is a function of the square of the velocity, one
would expect this pattern to exist as friction would tend to slow the flow nearest the wall
while the flow at the center of the tube would have the greatest velocity.

The three thin lines represent the SHARC computational results. The notation used
in the legend of Figure 2 is the same as that in Tables 1 and 2. The solid line shows the
results of the calculation using first order advection and no turbulence modeling. This curve
illustrates the large gradient in dynamic pressure impulse which initiated the experimental
study. The impulse for this calculation is at a minimum at the centerline and then rises to
a maximum between 8.0 cm and 8.5 cm. The minimum impulse at the centerline is well
below the experimentally measured impulse at the same location, while the maximum is far
greater than the experiments. From this curve, it is evident that a "jet" of high velocity
flow persisted between the centerline and the wall, while the flow near the centerline was not
nearly as high.
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Dynamic pressure histories for this calculation are compared to experiments in Figures 3.
4 and 5. In all cases, the peak dynamic pressure of the "M3TOV0" calculation is greater than
the experimentally measured peak. The resulting impulse at the centerline then falls below
the experimental history while those at 6.35 cm and 9.53 cm remain above the experimental
dynamic pressure histories. These figures reinforce the result illustrated in Figure 2.

The flow in the expansion section of the BRL 25.4 cm shock tube can be further charac-
terized through use of static pressure and Mach number contour plots. Earlier in the report.,
Equation 4 defined the dynamic pressure as a function of the ration of specific heats. -, the
static pressure, p and the Mach number, M. Since -y is assumed to be constant at 1.4, the
dynamic pressure can then only vary with static pressure and Mach number.

The graphics package supplied with the SHARC code is not capable of producing dy-
namic pressure contour plots, so we must plot both static pressure and Mach number to
understand the dynamic pressure patterns in the shock tube. Figures 6. 7 and S illustrate
the static pressure and Mach number in the shock tube at 10 ms for the calculation with
first order advection only.

Figure 6 is a static pressure contour plot which is scaled to show the driver section.
converging nozzle, throat and the expansion section up to the point where the pressure
measurements were taken (2.432 in). The pressure range in Figure 6 is from zero to 250 kPa
with red representing the low pressure and magenta, at the opposite end of the spectrum,
representing the highest pressures. Any pressure greater than 250 kPa is colored magenta as
illustrated by the color of the driver section. The expansion section nearest the top of the
plot is the area in which the pressure measurements were taken. The constant, deep blue
color of this area indicates that the static pressure here is constant from the centerline to
the wall of the expansions section.

Figure 7 is a Mach number contour plot which is drawn to the same scale as Figure 6. The
range of Mach numbers in this plot is from 0.0 to 1.0. As in the static pressure contour plot,
red represents low values and magenta represents the high end of the spectrum. Contrary
to the static pressure profile at the region of interest, a strong Mach number gradient is
evident in this plot. To further illustrate this gradient, Figure 8 is provided. This figure is
a "close up" view of the expansion section in the region of interest. The experimental and
computational pressure measurements were taken at 243.2 cm on the vertical axis. Figure 8
demonstrates the cause of the sharp dynamic pressure impulse gradient in the non turbulent
calculation. At the centerline (radius=0.0) low Mach number flow exists. Moving from
the centerline toward the wall (radius=12.7 cm), the Mach number rapidly increases and
reaches a maximum at about 8.0 cm. From this point outward, the Mach number then
rapidly decreases to a very low value at the wall.

After comparing the experimental results to the "M3TOVO" calculation, it became ap-
parent that the large dynamic pressure gradient was most likely an artifact of the calculation.
It was determined that in order to improve the distribution of dynamic pressure in the cal-
culations, improved mixing of the flow would be required. As a result, the K-c turbulence
model was employed with first order advection in the next calculation, "M3T1VO". The

8



results of this calculation are illustrated by the long dashed line in Figure 2. One can see
that by simply turning on the turbulence model, a tremendous im-provenlent was made to the
dynamic pressure impulse distribution as compared to the experimental results. This result
still maintained the basic shape of the non turbulent calculation. except at a niuch reduced
scale. The impulse for this calculation was at its minimum at the centerline, maximum at
about 8.5 cm and then began to drop again near the wall. A look at three specific locations
shows that the impulse at the centerline was less than the experimental impulse. while those
at 6.35 cm and 9.53 cm were much closer to the experimentally measured impulse.

Figures 9, 10 and 11 compare dynamic pressure histories from this calculation to ex-
perimental histories at, the centerline, 6.35 cm and 9.53 cm. These figures illustrate that
calculation "M3T1V0" still over predicts the peak dynamic pressure at all three stations
but, in general, is significantly closer to the experimental histories than the non turbulent
calculation.

Figures 12, 13 and 14 represent the results of the calculation using first order advection
and k-c turbulence modeling. These three contour plots are drawn using the same scales and
ranges as Figures 6, 7 and 8 respectively. Figure 12 again illustrates that the static pressure
is constant while Figure 13 shows a slight Mach number gradient, though not as strong as in
the non turbulent calculation. The "close up" view of the Mach number contours in Figure 14
shows that while some Mach number gradient still exists in the turbulent calculation, this
gradient is limited to Mach numbers between 0.3 and 0.4.

A final attempt to improve the computational results was made by using the second order
accurate advection scheme along with the K-c turbulence model and the artificial viscosity
model. This calculation is referred to as "M4T1V1". Of the three calculations, this one
produced the most uniform dynamic pressure impulse. However, while this impulse is nearly
uniform, it is interesting to note that the minimum impulse still exists at the centerline.,
while the maximum impulse exists at the wall.

Dynamic pressure histories from this calculation are compared to experimental histories
in Figures 15, 16 and 17. In these figures, one can see that the "M4TIV" calculation
provided a much better match to the experimental dynamic pressure histories than the
previous calculations. At the centerline and 6.35 cm locations, the peak dynamic pressure
nearly matched that of the experiments, while at 9.53 cm the calculated peak was slightly
higher than the experiment. Overall, the dynamic pressure histories of this calculation closely
follow the experimentally measured histories.

Finally, the static pressure and Mach number contour plots for the calculation with
second order advection, k-E turbulence and artificial viscosity are shown in Figures 18, 19
and 20. Again, these figures use the same scales and ranges as the previous plots. The results
of these plots are very similar to those of the calculation with first order advection and k-f

turbulence. The static pressure field in Figure 18 is a constant, deep blue while the Mach
number plots of Figures 19 and 20 show a slight gradient with the flow at the centerline
slightly lower than the flow near the wall. The "close up" Mach number contour plot, of
Figure 20 shows that the flow is a little more evenly distributed than that in Figure 14.
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These figures demonstrate the significant influence that the k-( turbulence model had on
the distribution of flow in the expansion section of the shock tube. \Without the turbulence
model, trong gradients in flow velocity originating at the beginning of the expansion section.
are allowed to persist further downstream. The k-( turbulence model inhibits the propagation
of these flow gradients and enhances the mixing in the expansion section resulting in improved
agreement with experimental data.

5. CONCLUSIONS

The results of this study indicate that turbulence plays an important role in shaping the
flow in the 1:57 scale LBS. The process of flow expansion from the throat section into the
expansion tunnel generates a "bottle" shock system. This "bottle" shock system. in turn,
creates velocity gradients across the expansion tunnel. When turbulence is not modeled in
computer simulations, these flow gradients persist well downstream into the expansion sec-
tion. These velocity gradients create dynamic pressure gradients which should be measurable
in experiments. The experiments, however indicate that these sharp flow gradients do not
exist.

Optical studies of flow in blast simulators like the 1:57 scale LBS have been conducted
and described by Opalka (1991). These studies demonstrate that this "bottle" shock system
is real and that the flow exiting the driver is turbulent. Adding a turbulence model to
the computer code greatly improves the agreement with experimental data. It is therefore
believed that turbulence plays an important role in shaping the flow in the 1:57 scale LBS
and the full scale LB/TS and should be included in numerical simulations of flow in these
facilities.

The turbulence model used in these calculations employed a "slip" wall condition which
does not model the friction encountered between the fluid and the shock tube walls. Possible
future work could involve the use of a turbulence model which takes this friction into con-
sideration. Use of such a model might bring the computational results into closer agreement
with the experiments.
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Figure 5. Dynamic Pressure History at 9.53 cm for Calculation M3TOVO.
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Figure 6. Static Pressure Contours for M3TOVO Calculation.

12



0. OOOE-00 1. 552E-01 3. 103E-01 4. 6SSE-01 6. 207E-01 7. 759E-01 S. 310E-01

LOCRL MPCH NUMSEP
2. 50 270

1 3326

2.25 250

240

2.00- 3

220

1. 75-21

200

1.501 190
160

1.00- 150

140

0.75- 130
120
100

0.50- 80
60

40
0.25- 30

20

0.00--1o 1
-1.25 -. 00 -0.75 -. 50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25

WDIUIS M

Figure 7. Mach Number Contours for M3TOVO Calculation.
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Figure 10. Dynamic Pressure History at 6.35 cm for Calculation M3T1VO.
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Figure 11. Dynamic Pressure History at 9.53 cm for Calculation M3T1VO.
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Figure 12. Static Pressure Contours for M13T1VO Calculation.
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Figure 13. Mach Number Contours for M3T1VO Calculation.
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Figure 14. Close Up View of Mach Number Contours for M3T1VO Calculation.
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Figure 18. Static Pressure Contours for M4T1V1 Calculation.
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Figure 19. Mach Number Contours for M4T1V1 Calculation.
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Figure 20. Close Up View of Mach Number Contours for M4T1V1 Calculation.
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